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We consider the mixing between two miscible liquids of slightly different density 
( <  10%) when one of them (cargo) is injected into a tank partially filled with 
the other (inventory). The injection of the cargo is such that buoyancy and inertia 
act in concert on the plume produced by the cargo. The two basic processes that 
govern the mixing of the two liquids in the tank are the entrainment of tank 
liquid by the plume and the tank circulation set up by this entrainment and by the 
plume discharge. Unlike plumes in an environment of infinite extent, the plume 
in this case changes its environment continuously, which, in turn, has a con- 
tinuously-varying effect on the plume. A mathematical model for the mixing of 
the two liquids is presented, from which one can compute the tank stratification 
that may result when given amounts of cargo and inventory are thus mixed. 
Plume entrainment theory is used for the plume dynamics and a ‘filling-box’ 
model is used for the tank circulation. The partial differential equations of t’he 
model ahre integrated by an original and unique numerical method. The problem 
was also treated experimentally. The tank stratification is expressed in terms of a 
normalized density-difference variable 6. Except for some very localized large 
discrepancies, due to certain local effects not included in the model, computed and 
experimental profiles of 6 agree very well, their maximum and average deviations 
being within 4 and 2%, respectively. It is found that values of the empirical 
plume parameters a and h that are used commonly for steady plumes in environ- 
ments of infinite extent are approximately right for the time-dependent plumes 
under consideration too. 

1. Introduction 
1.1.  Description of problem and previous work 

The work of this paper resulted from research efforts aimed a t  the understanding 
and control of an undesirable event that has occurred in several storage tanks for 
liquefied natural gas (LNG). The event has come to be known as tank ‘roll-over’. 
LNG storage tanks are operated a t  about a,mbient pressure, and some of them are 
as large as a football field in cross-sectional area. LNG tank roll-over produces an 
almost spontaneous boil-off of large amounts of methane vapour. The consequent 
tank over-pressure, sometimes unexpectedly large, is usually relieved by the 
prompt opening of safety vents. The dynamic processes that lead to LNG tank 
roll-over are not yet fully understood, a t  least not in quantitative terms. But one 
thing about this phenomenon is well established. Its cause is tank stratification 
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FIGURE 1. Sketch of plume resulting from the addition of light cargo through a horizontal 
bottom-fill nozzle. Arrows show plume entrainment, discharge of plume, and consequent 
tank circulation. 

that results when an LNG cargo is added to a partially filled tank; the density of 
the cargo is different from that of the tank's inventory; and cargo and inventory 
are not mixed adequately during the cargo transfer. Thus, the mixing of cargo 
with inventory is crucial for LNG tank roll-over. (Besides density stratification, 
temperature stratification plays an important role in the dynamics of LNG tank 
roll-over. The latter develops, during the dynamics of roll-over, from density 
stratificat'ion and from normal heat leak into the tank; but it can also arise, partly, 
from initial temperature differences between cargo and inventory.) 

Most operational LNG storage tanks have a single nozzle for the transfer of 
cargo. This is a t  the top or bottom of the tank. The injected cargo produces a 
buoyant jet or forced plume. Mixing of cargo with tank liquid comes about 
through entrainment of the latter by the plume and through the tank circulation 
pattern set up by this entrainment and by the plume discharge. These processes 
are shown schematically in figure 1, which depicts a transfer of light cargo 
through a horizontal bottom-fill nozzle. Upon completion of the transfer of a 
given amount of cargo, liquid near the free surface will be lighter than that near 
the bottom of the tank, and the tank will in general have some stratification, 
the degree of which depends on a, number of factors: density difference between 
and relative amounts of cargo and inventory, volume and momentum fluxes of 
the nozzle, and nozzle orientation and configuration. A similar situation results 
when heavy cargo is transferred through a top-fill nozzle. Note that in both 
cases buoyancy and inertia act in concert, the plume penetrates the entire liquid 
level at all times, and therefore all the tank liquid is involved in the mixing 
process throughout the cargo transfer. 

A quite different situation may arise when heavy cargo is transferred through a 
bottom-fill nozzle (or light cargo through a top-fill nozzle). I n  such cases, buoy- 
ancy and inertia do not act in concert, and the plume will not reach the top (or 
bottom) of the tank if the cargo does not have sufficient momentum; the plume 
will spread out into the tank liquid before it reaches the top (or bottom). The 
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part of the tank liquid which is not penetrated by the plume will remain com- 
pletely unmixed and, upon completion of the cargo transfer, the tank will have 
a stable gross stratification. 

For further details on LNG tank stratification consequent to various filling 
procedures, the reader is referred to Smith & Germeles (1974). In  that paper, some 
typical results were presented from a theoretical method for computing the tank 
stratification. In the present paper, we describe in detail the hydrodynamic and 
mathematical aspects of the method. Only those cases in which buoyancy and 
inertia act in concert are covered in this paper. The method is not restricted to 
LNG’s; it  is valid for any two liquids, of slightly different density, that are 
miscible. It is based on a mathematical model for the two basic hydrodynamic 
processes which, as mentioned above, govern the mixing in the tank: plume 
entrainment and tank circulation. 

A well-accepted mathematical theory for plume entrainment has been de- 
veloped over the last twenty or so years. Morton, Taylor & Turner (1 956) intro- 
duced the fundamental hypothesis of plume entrainment: the entrainment a t  
any height along the plume is proportional to a characteristic velocity there. 
The hypothesis introduced the empirical entrainment constant a. With this 
hypothesis, a Boussinesq-type approximation, and invoking similarity for the 
velocity and buoyancy profiles, Morton et al. developed a mathematical model for 
vertical plumes in uniform or stratified environments of infinite extent, and 
computed some special cases. But they did not incorporate in their model the 
fact that scalar profiles (like temperature or density) spread differently from 
velocity profiles, which was shown earlier through the experiments of Rouse, Yih 
& Humphreys (1952). The different spread of velocity and scalar profiles was 
subsequently introduced into the model by Morton (1  959). This brought a second 
empirical constant, A, into plume entrainment. With the revised model, Morton 
derived a number of interesting results, mostly for a uniform environment. It 
should be pointed out that, even at this level, the plume entrainment model is so 
complex that analytic solutions are not possible for any initial conditions on 
plume mass, momentum and density deficiency, even when the environment is 
uniform. Fan (1967) and Fan & Brooks (1969) introduced plume inclination 
into the model, for plumes in environments of infinite extent, and developed 
computer programs to obtain numerical solutions. In  an environment of infinite 
extent, the plume discharge does not influence the environment and, thus, the 
governing equations of the model are ordinary differential equations; the inde- 
pendent variable is a space co-ordinate measured along the plume axis. 

When the environment is finite (e.g. a finite tank), the plume discharge changes 
the environment continuously, which, in turn, has a continuously-varying effect 
on the plume. Then time is also an independent variable, and the governing 
equations of the problem are now partial differential equations, which increases 
the mathematical complexity of the problem considerably. For confined and 
thus changing environments, the plume model must be coupled wit.h a model 
for the environment. Baines & Turner (1969) proposed a simple model for the 
environment, which is referred t o  by Turner (1973) as the ‘filling-box’ model. 

The mathematical model of this paper is basically a combination of the most 
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recent plume entrainment model used by Fan & Brooks (1969) and of the tank 
circulation (filling-box) model proposed by Baines & Turner (1969). No pre- 
viously published work involving plumes in finite environments is based on a 
model which contains simultaneously as many features and effects as that of this 
paper. For instance, Baines & Turner did not consider in their model the effects 
of nozzle inclination (inclined plumes), of mass addition to the filling box, or of 
initial momentum in the plume. Furthermore, the only time-dependent solution 
that Baines & Turner computed for their problem is what they call the ‘large- 
time, asymptotic state’. The model described in this paper, in its most general 
form, has been simulated successfully in a computer program by an original and 
unique numerical method for the integration of the governing partial differential 
equations. 

LNG tank stratification was also studied at  Cabot Corporate Research through 
modelled laboratory experiments, with scaled-down tanks and nozzles, and with 
clear water and brine for the two liquids. Typical results from these experiments 
are included in this paper, to demonstrate the validity of the theoretical model. 

1.2. Outline of the paper 

The theoretical model is presented in $2. To simplify the presentation of the 
numerical method, we first present the model for a vertical, upward and centred 
plume in a stratified tank ($2.1) and, on the basis of this model, we then describe 
in detail the numerical method ($2.2). The modifications of the model for off- 
centred, inclined and downward plumes are described in $2.3. A brief description 
of the laboratory experiments is given in $ 3. Typical results from the theoretical 
model and from the laboratory experiments are presented, compared and dis- 
cussed in detail in $ 4. Finally, in $ 5 we offer a few concluding remarks. 

2. Theoretical model for plumes in tanks 
2.1. Model for vertical, upward and centred plumes 

Consider a cylindrical tank of diameter D, partially filled with a liquid (inven- 
tory), with a given stable initial stratification. Assume that another liquid (cargo) 
of slightly different density from that of the inventory is added to the tank at a 
volume flux (volumetric flow rate) Q through a round orifice (nozzle) of diameter d 
located at  the centre of the bottom of the tank, as shown in figure 2. Assume, 
furthermore, that the cargo and the inventory are miscible, and that the cargo 
is lighter than the inventory, so that the ensuing vertical plume is positively 
buoyant, and thus penetrates t o  the free surface of the tank a t  all times during 
the cargo transfer. The plume entrains ambient liquid continuously throughout 
its course, mixes the entrained liquid with its own liquid, and discharges a well- 
mixed liquid at the free surface. The discharged liquid makes up for the tank 
liquid entrained by the plume, and also increases continuously the liquid level 
of the tank. Thus, the entrainment and discharge of the plume set up a circulation 
pattern in the tank, as shown in figure 2. Obviously, this problem has azimnthal 
symmetry. 
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Q 
FIGURE 2. Schematic of plume resulting in cylindrical tank from centred bottom orifice 
discharging at volume flux Q. Shown are plume outline, entrainment and discharge, and 
consequent tank circulation. Also shown, at  station z, a m  velocity profile w' of plume, and 
average downward velocity U of tank liquid. 

Let z be a space co-ordinate, increasing upward, with its origin at  the orifice 
(figure 2). The instantaneous tank stratification is a function of z and of time t ,  
and the dependent variables of the plume are functions of z, t and a radial co- 
ordinate r ,  measured from the plume axis. The equations of conservation of 
volume, momentum and density deficiency for the plume are, respectively, 

a 
a2 
- (b2W) = 2abw, 

a 
az 
- (b2w2) = 2h'b'A, 

(3) 

b is the effective radius of the plume; w is the axial velocity of the plume evaluated 
on the plume axis; a is the empirical entrainment constant; h is an empirical 
constant for the density profile in the plume; poA is the buoyancy of the plume 
evaluated on the plume axis, po being a reference density; and Aa pertains to the 
instantaneous tank stratification, being 

Aa = g ( P a - P o ) / ~ o *  (4) 

g is the acceleration due to gravity; and pa is the instantaneous density profile 
of the tank. In deriving (1)-(3), we made the usual similarity assumptions for the 
profiles of the axial velocity of the plume liquid w' and of the plume density 
p ;  i.e. at  any height in the plume, the profiles of w' and of the plume density 
deficiency are Gaussian : 
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Whereas the variables w’ and p are functions of z, r and t ,  the variables b, w and 
A are functions of z and t only. 

A detailed derivation of (1)-(3) from integral formulations of the conserva- 
tion equations can be found in Fan (1967), although the equations that Fan 
derives are for plumes in environments of infinite extent; i.e. for time-indepen- 
dent, steady-state plumes. Here, the plume is time-dependent, owing to the 
continuous variation of the environment with time, and, in additmion to the 
assumptions made by Fan and others in deriving the plume conservation 
equations, we made the following: (i) time rates of change can be neglected 
in the plume conservation equations; (ii) the effective plume diameter 2 b  is, 
a t  all times and a t  all heights, much smaller than the tank diameter D. 

For the dynamics of the tank liquid (tank circulation), we adopt the ‘filling- 
box’ model proposed by Baines & Turner (1969). It is assumed in the filling-box 
model that the gross downward motion of the tank liquid, due to plume ent,rain- 
ment, can be described by an average velocity U ,  as shown in figure 2. (U is, of 
course, a function of z and t . )  Then U must satisfy the volume continuity equation 

tnD2U = nb2w - Q. (7) 

The corresponding equation of Baines & Turner does not have the Q term, since 
in their problem there was no mass addition to the filling box. With the gross 
motion of the tank liquid described in this way by U ,  the equation of continuity 
for the tank liquid is 

which is the other equation of the filling-box model. The level of the free surface 
in the tank is 

4Qt 
.rrD Z, = H0+--,. (9) 

H ,  is the inventory level in the tank; and t is measured from the start of the 
cargo transfer. 

Equations (1)-(3) and (7)-(9) are the governing equations of the model. Let us 
introduce the normalized varisbles 

I 
nb2w q = -  

Q ’  

, u=- 
Po - Pc 

4Qt 
7 r P (  H, - Ho) ’ 

= 9(1 +A2) (Po-Pe l  &’  

7 =  

nh2pob2zoA 

HE’ is the final level in the tank (at the completion of the cargo transfer); and pc 
is the density of the cargo, which is assumed to be constant. Note that the 
normalized independent variables of the model 7 and 5 are so defined that, a t  the 
completion of the cargo transfer, T = 1 and crn = 1. The normalized dependent 
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variables of the plume are q, m and f; and they are respectively equal to the plume 
fluxes of volume, momentum and buoyancy. The normalized dependent vari- 
ables of the tank liquid are S and u. 

I n  the normalized variables, the governing equations of the model are 

u =  q-1)  5, = 1-h(1-7) .  

Theparameters 8, y and h are defined by 

The parameter y is equal to the effective rate of work done by buoyancy, through- 
out t,he plume column, divided by the rate of kinetic energy released by the 
orifice; i.e. y is an effective Richardson number Ri,, or the squared inverse of the 
effective internal Froude number Fr.  (See Turner 1973, pp. 12, 176.) 

The initial and boundary conditions required for unique solutions of the 
governing equations are as follows. The required initial condition is that the 
stratification of the tank inventory must be known; i.e. the initial profile of 6 
(at 7 = 0) must be specified. The required boundary conditions are that the plume 
fluxes of volume, momentum and buoyancy must be specified a t  a fixed station 
for all times. Here, we match these plume variables to those of the orifice flow; 
thus the boundary conditions are 

a t  c =  0 for r 2 0. 
q = m = l  
f = 1-6  

In  specifying (20), we neglect a small flow-development region, through which 
orifice flow is converted to plume flow. There is one more continuity condition 
that is imposed on the model: at  the free surface, the density of the tank liquid 
must be equal to the average density of the liquid discharged by the plume. Owing 
to the density difference between cargo and inventory, this condition introduces 
a t  the free surface a step discontinuity in density a t  7 = 0, when the plume is 
‘turned on’. The discontinuity moves downward with time. This last condition, 
and t’he resulting discontinuity, are discussed in more detail in 5 2.2, where the 
numerical solution of the model is described. 

It is important to note that only one of the four partial differential equations 
of the model contains a derivative with respect to time: namely (14). The 
method devised for the numerical integration of the differential equations of the 
model takes advantage of this peculiarity. 

2.2. Numerical solution 

Assume that the profile of 6 is known a t  time 7; and let it be represented by the 
‘staircase ’ function 
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FIGURE 3. Sketch defines staircase structure of 6 profile st times 7 and T+AT.  In time 
interval A7, step interfaces move downward from Cj to [;, and a new step (hatched) of 
amplitude S,+l is added to staircase by discharge of plume. Included are plume outline 
and position of front (- - -). 

S is the unit-step funct,ion defined by 

There are n steps in the staircase. The i th step extends from c = cidl to 6 = & 
(f;: is smaller than, but arbitrarily close to, f;J;anditsarnplitudeisl$. (Seefigure3.) 
The values of the array S,(l < i 6 n) are known; so are the values of the array 
ci (0 < i 6 n). co is a t  the origin of the 5 axis (i.e. co = 0 ) ,  while Cn is the position 
of the free surface at time r, as given by (16). 

With this representation of 6, integration of (1 3) with the boundary conditions 
for f given by (20)  yields 

It 

f = 1 - c ki-lfJ(5- ci-1) -qiS(c-- CJl. (23) 
i = l  

qi is the value of q at 6 = (si (0 6 i < n). Thus, the profile off a t  time r also has a 
staircase form. Except for qo, which must be equal to 1 according to the boundary 
conditions ( Z O ) ,  the values of the array qi are as yet unknown. An equivalent 
expression of (23) is 

fi is the amplitude of the ith step in the staircase profile off. It can be shown that, 
€or (23) and (24) to be identical, the fi’s must satisfy the recurrence relation 

fi = fiVl - qiP1(Si - 6i-l), 2 < i < n, (25) 

fl = l-S1. (26) 

where fl is given by the boundary condition (20); i.e. 
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With fl known from (26), (11)  and (12) are now integrated forward from 
5 = Q = 0, where q and m are known from the boundary conditions (20), to  
5 = cl. (A Runge-Kutta integrating scheme is used for this integration in the 
computer program.) This integration yields the profiles of q and m in the inter- 
val co < 6 < Q. With q1 now known, fi is then computed from (25). Next, (11)  
and ( 1  2) are again integrated, from 6 = cl to 5 = b, and so on to the free surface. 
This procedure determines the amplitudes fi of the staircase profile off and the 
continuous profiles of q and m a t  time 7 .  The profile of u and particularly, the 
values ui of u a t  5 = ci (0 < i < n) are then computed from (15). Thus, the profiles 
of all dependent variables are now known a t  time T. 

Next, let time be increased by a small interval A r .  I n  the time interval AT,  
the interfaces ci of the staircase profile of 6 move downward to new positions St 
(see figure 3), which, to a first approximation, are given by 

Thus, the staircase profile of S is squeezed downward in accordance with (27), 
while the amplitudes 6, of the staircase steps remain constant. This process is 
equivalent to integrating (14)  in the time interval AT. Note that, since u is maxi- 
mum a t  the free surface and equal to  zero a t  the bottom of the tank, the squeezing 
of the staircase becomes progressively more intense from the bottom of the tank 
to the free surface. Note also that this downward squeezing represents, physically, 
the entrainment of ambient liquid by the plume in the time interval AT. 

During the same time interval AT, the plume also discharges a small amount of 
liquid, shown by the cross-hatched area in figure 3, which becomes part of the tank 
liquid; i.e. another step of amplitude 8n+l, that extends from is added 
to t,he staircase profile of 6. It can be shown that, to  the approximation on which 
(27) is based, 

to 

S n + l =  an +fnlqn. (28) 

fn  is the amplitude of the nth step in the staircase profile off a t  time T ;  and qn is 
the value of q a t  5 = and a t  time 7 .  Since fn and qn are known, (28) determines 
the value of an+,. Also from (16), 

cA+l = l - h ( l - ~ - A ~ ) .  (29) 

Thus, the entire staircase profile of 6 is now known a t  time T + Ar. It has one step 
more than i t  had a t  time T ;  and it is 

With the profile of 6 known a t  time ?+AT,  repetition of the procedures de- 
scribed above for the computation of the other dependent variables of the model 
(f, q, m and u) yields the profiles of these at time T + Ar.  Since the profile of 6 is 
specified at T = 0 by the initial condition, repeated applications of the procedures 
can yield a unique numerical solution a t  any future time. 

F L M  71 39 
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After each discharge by the plume, the difference AS of the 6 values of the two 
uppermost steps in the staircase profile of 6 is given, from (28), by 

As the staircase is squeezed downward in time while more steps are added on its 
top by the consecutive discharges of the plume, the differences A6 between ad- 
jacent steps remain unchanged. Now, these differences AS are small in the same 
sense that the time intervals AT are so, except for the first discharge of the plume 
right after i t  is ‘turned on’. For the first discharge, the ratio fn/qn (and hence 
AS) can be a large quantity, depending on the density difference between cargo 
and invent’ory and on the amount of entrainment by the plume. Thus, the stair- 
case profile of 6 can have, in general, one very steep step, which results from the 
first discharge of the plume and represents a physical discontinuity in the profile 
of tank stratification. The front edge of this steep step will henceforth be referred 
to as the ‘front ’. (Baines & Turner (1969) call a similar discontinuity in their 
problem the ‘first front’.) The front travels downward with time, as shown 
in figure 3. The discontinuity in IS across the front does not change with time. 

The staircase profile off also has a physical discontinuity at the front. How- 
ever, unlike that of 6, the discont,inuity off at the front does change with time, 
since f is a function of the plume density, as well as of the ambient density pa, 

A FORTRAN computer program was developed for the model, with the 
numerical procedures described above. It uses continuously-variable time 
intervals for the time integration, which it selects by certain criteria. It monitors 
continuously the heights of t,he steps in the staircase profile of 6, which decrease 
continuously as the staircase is squeezed downward with time. If a particular 
step becomes too low, by certain criteria, it  is absorbed by either of the two 
adjacent to it, in a way that preserves the local average value of 6. Obviously, 
this periodic elimination of steps is to avoid accumulating a staircase with a 
prohibitively large, and unnecessary, number of steps. (Recall that a new step is 
added to the staircase after each time interval.) But the step with the front is 
excluded from this manipulation, to preserve the exact value of the discontinuity 
in S across the front and the exact position of the front with time. The program 
has other interesting features, description of which is beyond the scope of this 
paper. 

2.3. Other plume configurations 

The ideal plume configuration (vertical, upward and centred with respect to the 
tank) of the model of 5 2.1 is not usually met in practice. I n  LNG storage tanks, 
the fill nozzle (orifice) has quite often an off-vertical orientation, and is usually 
quite close to the tank wall, too. Thus, the ensuing plume is neither vertical nor 
centred with respect to the tank. Furthermore, when a cargo that is heavier than 
the tank’s inventory is transferred through a top-fill nozzle, the ensuing plume 
is still accelerating as in 3 2.1, but it is downward instead of upward. 

As mentioned earlier, we purposely chose to describe the details of the model 
in terms of the ideal plume configuration, to simplify the presentation of the 
numerical method. In  this section, we state the modifications of the model of 
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$2.1 that are required to cover off-centred, inclined and downward plumes. The 
laboratory experiments, which modelled actual LNG storage tanks, and with 
which the computer model is compared in 4 4, involve plume configurations such 
as the ones described in this section. 

2.3.1. Off-centred and inclinedplumes. One of the basic conditions on which the 
model of 4 2.1 is based is that the plume diameter 2 b must be much smaller than 
the tank diameter D throughout the plume a t  all times. This condition excludes 
interference of the tank well with the plume. Also, it justifies the validity of the 
basic feature of the ‘filling-box’ model for the tank circulation: that the gross 
downward motion of the tank liquid can be described by an average velocity U. 

Consider now the off-centred vertical plume that ensues when a nozzle is not 
positioned on the centre of the tank. If the plume remains a few plume diameters 
away from the tank wall throughout its course, so that the wall does not interfere 
with it, then the model of 3 2.1 is valid here too, despite our no longer having 
azimuthal symmetry. But, as is sometimes the case in LNG tanks, the nozzle may 
be so close to the wall that the wall could interfere with it, a t  least above a certain 
plume height. We believe that the model of $2.1 is valid even for such cases, 
provided that the entrainment constant cc is properly reduced, to account for any 
prominent wall interference effects. (The reduction of a could be made only above 
a certain plume height, a t  which wall interference begins.) 

Next, consider the inclined plume that ensues when a nozzle is inclined 
as indicated in figure 1. Again, the basic principles of plume entrainment and 
tank circulation used in the model of $ 2.1 are valid here, provided the plume path 
is such that the wall does not interfere with the plume. We shall not present here a 
complete exposition of the model with inclined plumes. A detailed derivation of 
the equations of inclined plumes in environments of infinite extent can be found 
in Fan (1967). Instead, we shall simply describe the few alterations of the govern- 
ing equations of the model of $ 2.1 that are introduced by plume inclination. 

Let 8 be the inclination of the plume axis with respect to the horizontal plane, 
and B0 be the value of 8 a t  the nozzle (i.e. the nozzle inclination). Make the follow- 
ing single modification to the normalized variables defined by (10) : 

m is still equal to the flux of vertical momentum in the plume. Then it can be 
shown that the only alteration of the normalized conservation equations of the 
plume (1 1)-( 13) is that (1  1) must be replaced by 

9 = pmt (1  + cos2 8,/m2)+. (33) ac 
This equation, as well as (34) and (36) below, can be derived readily when it is 
recognized that the flux of horizontal momentum in the plume must remain con- 
stant, since the only external forces that act on the plume (buoyancy orgravity) 
are vertical. The path of the plume can be computed from 

39-2 
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x is the horizontal co-ordinate of the plume axis normalized by HF. The boundary 
condition on x is 

The inclination of the plume can be computed from 

x = O  a t  < = O  for 7 2 0 .  (35) 

(36) sin 8 = (1  + 0082 8,/nz2)-k 

As for the equations for the tank liquid (tank circulation), it can be shown that 
(14) and (15) are still valid except in a small region near the bottom of the tank 
when the nozzle is horizontal (see also the discussion below). The only alteration 
of the boundary conditions given by (20) is that 

m = sin@, a t  5 = 0 for 7 2 0. (37) 

In  summary, the normalized equations of the model with inclined plumes are 
(12)-( 16), (33) and (34). The normalized boundary conditions are given by (20), 
as modified by (37), and (35). The initial condition and the continuity condition 
at  the free surface are the same as in the model of 9 2.1. 

No basic alterations of the numerical procedures of $2.2 are needed with in- 
clined plumes. The plume path can be found readily by integrating (34) with 
the boundary condition (35). However, when the nozzle is horizontal (8, = 0), 
the governing equations have a singularity a t  5 = 0, as may be seen from (37), 
(12), (33) and (31). Numerically, this difficulty can be taken care of readily, by 
using a value of 0, that is slightly larger than zero (by one or two degrees). 

The physical ramifications of a horizontal nozzle are as follows. If the cargo jet 
is very strong, it can travel a considerable distance along the bottom of the tank 
before being bent upwards by buoyancy, becoming an inclined forced plume. 
This local effect is not included in the model, and therefore the model cannot 
predict the tank stratification in a small region near the bottom of the tank for 
such a case. But the model is valid outside this small region. For wcak cargo jets, 
the cargo becomes an inclined buoyant plume within a few nozzle diameters 
of the nozzle; hence, this local effect is insignificant. (It is assumed that there 
is a significant density difference between cargo and inventory.) 

For inclined plumes, Ri, is equal to y divided by the square of the value of m 
at 6 = 0 given by (37). 

2.3.2. Doumward plumes. Consider now the transfer into a tank of a cargo 
which is heavier than the tank’s inventory, through a top-fill nozzle. The result- 
ant downward plume is again an accelerating plume. Let us assume that the nozzle 
is above the free surface of the tank liquid throughout the cargo transfer. It can 
be shown readily that the model for upward plumes, with a slight alteration of 
the boundary conditions, applies also to downward plumes, provided that the 
origin of the 6 co-ordinate is taken on the moving free surface with < increasing 
downward, and that g is replaced by - g .  now becomes the instantaneons 
position of the bottom of the tank, which moves away from the origin of 5 
(free surface) as the tank is filled up. 

Alteration of the boundary conditions is required by the cargo jet’s free fall, 
which increases its vertical momentum. On the assumption that it does not break 
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up during fall, its momentum a t  6 = 0 can be computed readily from Bernoulli's 
equation. Then, a t  5 = 0 for T 0, the boundary conditions for m and x are 

The parameters y1 and h, are defined by 

(39) 

H, is the height of the nozzle above the free surface a t  T = 0. y1 is the squared 
inverse of the effective Froude number for the free fall a t  T = 0. Note that m and 
x a t  6 = 0 decrease with time, in this case. 

In  the boundary condition (38), it  is assumed that there is no surface-entry 
effect on the momentum of the cargo jet. The laboratory experiments with top- 
fill nozzles showed that the jet from an inclined nozzle produces a great number of 
surface waves and much agitation as it enters the tank liquid, while the jet from a 
vertical nozzle (0, = 90') makes a very smooth entry, with hardly noticeable 
waves. Surface agitation and waves consume energy that must come from the 
jet: the momentum of the jet is reduced. Thus, the boundary condition (38) on 
m is not accurate when the nozzle is inclined. 

Ri, is equal to y divided by the square of the value of m a t  6 = 0 as given by 
(38). Since m a t  < = 0 decreases with time, Ri, increases with time in this case. 

3. Brief description of laboratory experiments 
Figure 4 is a schematic of the apparatus with a top-fill nozzle. Clear water and 

brine were used for the two liquids. Cargo of a specified density was first prepared 
in a large stainless-steel cylindrical tank, then transferred through it nozzle to a 
cylindrical Plexiglas tank, of diameter 4 ft, which held a specified amount of in- 
ventory. The density difference between cargo and inventory was usually less 
than 7 % .  The cargo was coloured with methylene blue, to facilitate visual 
observations and photographing of the plume and mixing processes in the 
Plexiglas tank. 

The cargo transfer pump had a constant flow rate. A needle valve was used to  
set the desired cargo flow rate, and most of the pump's throughput was dis- 
charged back into the cargo tank, thus keeping the cargo well mixed a t  all times. 
The cargo flow rate was measured with a rotameter. 

Upon completion of a cargo transfer operation, the stratification profile of 
the Plexiglas tank was taken by drawing samples from various depths of the 
tank with a probe. Figure 4 includes a schematic of the probe assembly. The probe 
was made from plastic and copper tubing, a syringe, a graduated length scale and 
a +in. diameter steel ball with the intake orifice. The ball was connected to the 
syringe with plastic tubing, most of which was inserted into a straight section of 
copper tubing. The ball was attached to the end of the copper tubing permanently. 
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FIGURE 4. Schematic apparatus with top-fill nozzle. 

The length scale was attached to the side of the copper tubing. A rack a t  the top of 
the Plexiglas tank(figure 4) was used to insert the probe to and hold it at adesired 
depth. A sample having been drawn into the syringe, the probe was drawn out 
of the tank, the sample was transferred to a container, and the probe was flushed 
thoroughly with air. (The syringe had a valve for this purpose.) The rack con- 
strained the movement of the probe to the vertical direction, minimizing dis- 
turbances of the tank liquid. The depth from which a sample was drawn was 
read off on the length scale attached to the probe. The specific gravity of each 
sample was measured with an analytical balance and a standard 25cc flask 
commonly used for specific gravity measurements of liquids. 

This technique for measuring tank stratification profiles was developed and 
improved through a number of series of experiments. For the most recent series 
of experiments, it  is estimated that the accuracies of the depth and specific 
gravity measurements are at least &in. and 0.0001, respectively. 

4. Results and discussion 
A number of cases were both modelled in the laboratory and simulated by the 

computer program. The computed and experimental results for two typical 
cases are now presented and discussed. 

One obvious problem in the computer simulations was the choice of appro- 
priate values for the empirical constants a and A ,  in view of the fact that the 
values for plumes differ from those for jets. Morton (1959) pointed out the dis- 
tinction between a jet and a plume. An ideal jet is characterized by constant 
momentum throughout its course (no buoyancy forces, Fr = a). An ideal plume 
is characterized by no initial momentum (FT = 0); its momentum is acquired 
through the action of buoyancy. Anything between these two ideal extremes is a 
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Parameter 
Tank diameter D (ft) 
Inventory level H ,  (in.) 
Final level H F  (in.) 
Cargo flow rate Q (g.p.m.) 
Nozzle diameter d (in.) 
Nozzle orientation 0, (deg.) 
Initial height of nozzle above 
free surface H ,  (in.) 

Inventory density po (sg) 
Cargo density pc ( sg )  
Entrainment constant a 

h 

Y 
h 
Y1 

Fr 

P 

hl 

Example f 4.1 
4 

16.69 
28.80 

1.1 1 
0.53 

90 
17.61 

0.9988 
1.0584 
0.082 
1.16 

25.21 
2-074 
0.4205 

0.6115 
18-12 

4.23% 

t 0, = 2” was used in the computer program. 
$ At the onset of the cargo transfer (7 = 0). 

TABLE 1. Summary of parameters 

Example f 4.2 
4 
2.03 
2-70 
0.07 18 
0.40 

NA 
ot  

1.0582 
0.9979 
0.082 
1.16 
3.131 
1.440 
0.248 
NA 
NA 
0.0291 

‘buoyant jet’ or a ‘forced plume’, and this is precisely what we have here. For 
round ideal plumes, a = 0.082 and h = 1.16; for round ideal jets, a = 0.057 and 
h = 1.12. It is common practice to use in forced plumes the values of a and A 
for ideal plumes. Thus, unless stated otherwise, the values of a and h used 
throughout this work are 0-082 and 1.16, respectively. 

4.1. First example: top-Jill, vertical nozzle 

I n  this case, cargo heavier than the tank’s inventory by 5.97% is transferred 
through a top-fill nozzle directed straight down. The physical and normalized 
parameters of the case are summarized in table 1. Included in table 1 is the value 
of Er a t  the onset of the cargo transfer (7 = 0). The tank is unstratified initially, 
and the reference density po is taken to  be equal to the inventory density, so that 
S = 0 initially. The nozzle is far enough away from the tank wall that  there is no 
significant wall interference with the plume. This was observed visually in the 
laboratory, and also was predicted by the computer program, which computed 
the effective plume diameter throughout the course of the plume. 

Figures 5 and 6 show the fluxes of volume q and momentum m in t,he plume as 
functions of time 7 and distance from the free surface of the tank [. (Recall that 
r = 1 corresponds to  the completion of the cargo transfer and that, with top- 
fill nozzles, the origin of 5 is attached to the free surface.) Note that the plume 
entrains, per unit time, 40 (at 7 = 0) to 56 (at 7 = 1) times its initial volume. 
Owing to  the free fall, the momentum of the cargo jet is multiplied by a factor 
of 6.1 (at 7 = 0) to 3.5 (at 7 = 1 )  by the time the jet hits the free surface. After 
the entry of the jet into the tank liquid, the momentum flux m of the ensuing 
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FIGURE 5. Example $4.1 : volume flux q against distance from free surface 5 
for various times 7. 

m 
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FIGURE 6. Example $4.1 : momentum flux m against distance from free surface t; 
for various times 7. 

plume is increased continuously by the net downward gravity forces. But, as 
figure 6 shows, the change of m with 5 is relatively slow near the free surface. 
This is a consequence of the fact that Fr is rather large throughout the cargo 
transfer; Fr is equal to 4.23 and 2.43 a t  r = 0 and r = 1,  respectively. 

The computed tank stratification profiles 6 for various times and the corre- 
sponding fluxes of plume buoyancy f are shown in figures 7 and 8. The staircase 
structure of both 6 and f is an artifact of the numerical method. By the time 
r = 0.1, the front has already moved to 5 = 0-036 (i.e. near the free surface). 
This is a consequence of the high speed with which the front moves upwards in 
this case; q, and therefore u, is very large away from 6 = 0, as shown in figure 5. 
But it can be shown that an infinite time is required for the front to arrive ex- 
actly on the free surface, although here the front is very close to the free surface 
by t,he time about 20% of the cargo has been transferred (7 = 0.2). The step 
discontinuity in 6 across the front is only 0.0249 (very small). This is also a conse- 
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61 7 

FIGURE 7. Computed tank stratification profiles in example 34.1 for various times 7. 
Free surface is a t  < = 0. After cargo transfer (7 = l),  bottom of tank is at 5 = 1. Point A ,  
very close to the free surface, is origin of 6 profiles a t  7 = 0.4, 0.7 and 1. x , experimental 
profile at 7 = 1. 
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FIGURE 8. 
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Example $4.1 : buoyancy flux f against distance 

free surface < for various times T. 
from the 

yuence of the large q. That is to say, so much more ambient liquid is entrained 
by the plume than is in the cargo jet, that the first discharge of the plume (at 
7 = 0) has a 6 only slightly different (by only 0.0249) from that of the inventory. 
The profiles of S and f behind the front become continuously steeper as the front 
advances toward the free surface. I n  fact, by the time the front gets very close to  
the free surface (7 = 0.2), the profile of 6 very near the front becomes so steep that 
i t  is impossible to  draw it on the scales of figure 7. I n  figure 7 the origin of the 6 
profiles a t  7 = 0.4, 0-7 and 1 is depicted as point A ,  which has a value of S equal 
t o  0.0249 and a very small value of [that decreases continuously wit,h time, b u t  
cannot become exactly equal to zero in a finite time. 

Included in figure 7 is the tank stratification profile that was obtained in the 
laboratory after cargo transfer. The experimental tank stratification is stable 
and also very smooth, an indication of the accuracy of the measurements. The 
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FIGURE 9. Computed tank stratification profiles in example $4.1 for various times 7 ,  

with a reduced to 0.057 near the free surface. (See figure 7 for other comments.) x , experi- 
mental profile at T = 1. 

computed and experimental profiles of 6 at  r = 1 agree quite well, except on and 
near the free surface. On the free surface (6  = 0) ,  the experimental value of 6 is 
0-287, while the computed value is equal to zero: the front never gets to the free 
surface. Near the free surface (0 < 6 < 0.15)) the deviation of the experimental 
and computed profiles is as large as 10 yo; for 6 > 0-15, it is only of order 1%. Of 
course, good agreement between the computed and experimental results on, and 
very close to, the free surface ought not to  be expected. For the mathematical 
model does not contain the surface entry effect (which must dominate mixing 
very near the free surface, even for vertical entry by the cargo jet), or the effect 
of the small flow-development region, through which the cargo jet is converted 
to a forced plume. 

On the other hand, near the free surface, agreement between computed and 
experimental results can be improved by a more appropriate entrainment con- 
stant a in this region. It was pointed out earlier in this section that Fr is rather 
large, and as a consequence plume momentum changes very slowly near the free 
surface. I n  other words, near the free surface we have in this case something that 
behaves inore like an ideal jet (a = 0.057) than an ideal plume (a  = 0.082). By 
using 0.082 throughout the plume, we introduced too much entrainment near 
the free surface. Hence, the computed profile of 6 near the free surface is not as 
gradual as the experimental. 

One representation of a, more appropriate here, is that for an ideal jet nea.r the 
free surface, and that for an ideal plume further down. Accordingly, we used in 
the computer program CI = 0.057 from the free surface (6 = 0 )  down to a value 
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FIGURE 10. Plume trajectories of example 54.2 for various times 7. 

of cat which the increase in m is within 10 yo of the value of m a t  5 = 0, and 0.082 
from there on. The tank stratifications that resulted from this computation, 
together with the experimental results, are shown in figure 9. The agreement 
between computed and experimental results is now very good throughout the 
tank except, as expected, on and very close to  the free surface. Their maxi- 
mum deviation is within 2 yo, while their average deviation is only about I %. 

4.2. Second example : bottom-$11, horizontal nozzle 

The cargo is lighter than the tank's inventory by 5.7 % in this case, and is trans- 
ferred through a horizontal nozzle placed flat on the bottom of the tank and 
directed toward its centre-line. The physical and normalized parameters of the 
case are summarized in table 1.  For numerical reasons (stated in $2.3.1),  8, = 2" 
was used in the computer program instead of 0'. This does not introduce any 
significant uncertainties in the results: the actual orientation of the nozzle could 
very well be off the horizontal plane by 2". Again, the tank is nnstratified 
initially, and the reference density po is taken equal to the inventory density, 
so that 6 = 0 a t  r = 0. 

Figure 10 shows the normalized plume trajectories for various times. (Recall 
that, with bottom-fill nozzles, the origin of 5 is on t,he bottom of the tank and that, 
on completion of cargo transfer, the free surface is at  5 = 1. )  Evidently, the plume 
turns upward after a small distance from the nozzle exit, and its horizontal 
range is a t  no time larger than its height. The initial, almost horizontal jet is bent 
upward by the strong buoyant forces. Obviously, there is no way that the tank 
wall could interfere with the plume in this case. These statements on the trajectory 
of the plume were verified visually in the laboratory. 
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m 

FIGURE 11. Example $4.2 : flux of vertical momentum m against distance 
from tank bottom 5 for various times 7.  

6 

FIGURE 12. 
Q 

onset (7 = 0) and after (7 = 1 )  cargo transfer. 
Example W 4.2 : volume flux q against distance from tank bottom the 

The strong effect of the buoyant forces can be seen also in figure 11, which 
shows the flux m of thevertical momentum of the plume. The flux of thehorizontal 
momentum of the plume remains constant throughout the plume, as pointed out 
in $2.3.1; and it  is roughly equal to 1 in normalized form. One may see from 
figure 1 1  that m, which starts from practically zero, becomes equal to  the flux 
of horizontal momentum in the plume within a small distance from the bottom. 
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FIGURE 13. Computed tank stratification profiles in example $4.2 for various 
Tank bottom is at  5 = 0. After cargo transfer (T = l), free surface is at  5 = 1. x 
mental profile at 7 = 1. 
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times 7. 

, experi- 

At the free surface, mis 2-7 (at T = 0 )  to 1.7 (at T = 1) times the flux of horizontal 
momentum in the plume. The noticeable slope discontinuity in the m profile a t  
the front is there because of the large discontinuity inf across the front. (See (12) 
and figure 14 below.) 

One unexpected result in this case is that the volume flux q of the plume at a 
given height 5 hardly changes a t  all, as shown in figure 12, despite the fact that  
m a t  agiven cdoes change with time considerably. (Equation (33) relates the vari- 
ation of q with t; to m.) It ought also to  be noted that the values of q are an order 
of magnitude smaller than those in the first example. The main reason for this is 
that  of the parameter p is almost an order of magnitude smaller. (See table 1.) 
Another reason is that the initial m is much smaller. I n  physical terms, there is 
much more entrainment of ambient liquid by the plume and, consequently, 
more mixing of the two liquids in the first example than in this. 

The computedprofiles of 6 andfare shown in figures 13 and 14. Note the motion 
of the front toward the bottom of the tank. Note also that, as the front moves 
downward, the discontinuity of S across the front does not change with time, 
while that off does. The front moves much more slowly than in the first example. 
Even after cargo transfer, i t  is quite some distance from the bottom. At any given 
time, the tank liquid below the front consists entirely of the initial inventory (i.e. 
there is a sharp tank stratification until the front gets close to the bottom). It 
can be shown for this case too that an infinite time is required for the front to 
arrive exactly a t  6 = 0. Both the tardiness of the front and the rather large dis- 
continuity in 6 across the front (0.181) are, of course, due to the small q. 

The experimental tank stratification after cargo transfer is also shown in figure 
13. The stratification is stable here too; but there is more scatter in the experimen- 
tal points than in the first example. The reason for the scatter is that this case is 
from an earlier series of experiments, in which the experimental technique was 
not as advanced as in the most recent series, from which the first example 
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f 
FIGURE 14. Example $4.2:  buoyancy flux f against distance from 

the bottom of the tank 6 for various tiines 7. 

comes. Considering the small scatter of the experimental results, we conclude 
that there is very good agreement between computed and experimental results 
throughout the tank, except in a region near the bottom (c  less than about 0.2). 
Outside this region, the maximum deviation between computed and experi- 
mental results is within 4 yo, and the average deviation is less than 2 yo. This 
bottom region is roughly that occupied by the nozzle (d /H,  = 0.148); and we 
should not expect our model to predict the tank stratification in this, the plume- 
flow development region. In  fact, it is rather surprising that there is such good 
agreement between computation and experiment so close to the nozzle. 

5. Concluding remarks 
Except for some relatively minor, localized differences, the computed and 

experimental tank stratifications agree quite well. This establishes the validity 
of the mathematical model. The minor differences are due to local effects (such 
as the plume-flow development region, the entry of the cargo jet through the free 
surface, etc.). These are not included in the model; and they are so localized that 
they may be insignificant in practice. 

This work has demonstrated the following. (i) The ‘filling-box’ model is valid 
for the circulation t,hat results in the liquid in a finite tank when another liquid 
is injected into i t  through a nozzle. (ii) Well established entrainment theory for 
steady plumes is also applicable to time-dependent plumes in confined regions. 
(iii) Values of plume parameters a and h used widely for steady plumes in en- 
vironments of infinite extent are also approximately right for time-dependent 
plumes in confined regions. The emphasis in thislastremarkis on ‘approximately’, 
since the model is not extremely sensitive to a and A. 

The numerical method devised in this work is unique, in that i t  exploits the 
particular form of the governing differential equations. The method has worked 
in the computer program very stably and efficiently. I n  a disc-operated IBM 
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1130 with user core of only 4K, a rather small and slow computer, only a few 
minutes are required to run a case. A large number of cases have been run, and 
no instability or other numerical difficulties whatsoever have been encountered. 

The efficiency and stability of the numerical method may be attributed to the 
fact that the method simulates the physical sequence of events rather closely. 
The discharge of the plume may be conceived of as taking place in a sequence of 
time intervals. Each interval creates a new layer of well-mixed liquid of a given 
density and height. After a layer is formed, it is convected vertically through the 
tank liquid because of plume entrainment. During this convection, the density 
of a given layer remains constant, but the height of the layer diminishes con- 
tinuously, owing to depletion of the layer’s liquid by plume entrainment. How 
much ambient liquid is entrained by the plume a t  any given time (and, most 
important, what kind) depends on where the various layers then are. Thus, the 
quantity and density of the liquid discharged by the plume are functions of time, 
and so are the height and density of the consecutive layers formed by the 
consecutive discharges of the plume. This sequence of events is precisely what 
the method simulates. 

The raw data for the experimental results in the example of 54.2 are from 
experiments conducted by Mr D. A. Douglas, Department of Corporate Re- 
search, Cabot Corporation, prior to those of the author. The author is grateful 
to Professor K. A. Smith, Massachusetts Institute of Technology, for helpfuI 
discussions. 
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